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Abstract—1In post-disaster scenarios, efficient search and
rescue operations involve collaborative efforts between robots
and humans. Existing planning approaches focus on specific
aspects but overlook crucial elements like information gath-
ering, task assignment, and planning. Furthermore, previous
methods considering robot capabilities and victim requirements
suffer from time complexity due to repetitive planning steps.
To overcome these challenges, we introduce a comprehensive
framework—the Multi-Stage Multi-Robot Task Assignment.
This framework integrates scouting, task assignment, and path-
planning stages, optimizing task allocation based on robot
capabilities, victim requirements, and past robot performance.
Our iterative approach ensures objective fulfillment within
problem constraints. Evaluation across four maps, comparing
with a state-of-the-art baseline, demonstrates our algorithm’s
superiority with a remarkable 97 percent performance increase.
Our code is open-sourced to enable result replication.

I. INTRODUCTION

Advancements in robotics enable their assistance in dan-
gerous human-avoidant search and rescue tasks [1]. Such
operations often demand coordination of multiple robots and
humans, but this poses various challenges [2], [3]. These
challenges encompass diverse tasks in varied environments
with constraints [2], [4], [5], underscoring the importance
of effective multi-robot task assignment frameworks [6].
Existing frameworks lack comprehensive inclusion of in-
formation gathering, assignment, and planning [7], [8], and
optimizing them becomes more complex with increased
robot diversity [9].

To address these issues, we propose a scouting-integrated
framework for search and rescue encompassing Multi-
Stage Multi-Robot Task Assignment (MSMRTA) and path
planning. Our framework optimizes assignment of diverse-
capability robots to specific tasks. Task assignment employs
optimization and market-based techniques [10], enhancing
practicality. Empirical evaluation across various map com-
plexities demonstrates significant planning time reduction
(97%) compared to a baseline (MRGA) [2], with a slight
(61.2%) increase as robot-victim instances grow. This paper
uses off-the-shelf methods for the scouting and path-planning
stages of the framework, but our proposed framework can be
extended to incorporate other search and planning algorithms
as well.
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II. RELATED WORK

As a humanitarian research domain [11], the development
of robot technology for search and rescue operations con-
tinues to be an important area of study. To enhance the
efficiency of multi-robot search and rescue, Quattrini Li et al.
[12] introduced semantic cues, while Liu et al. [13] employed
hierarchical reinforcement learning. To further improve the
overall performance of the system, we integrate semantics
related to the capabilities and requirements of robots via
binary vectors.

Multi-Robot Task Assignment (MRTA) is vital for efficient
search and rescue missions, categorized as Centralized meth-
ods [14], Decentralized methods [15], and Hybrid methods
[5], [16]. For instance, Zhao et al. [14] employed centralized
methods to locate survivors using heterogeneous robots,
while our approach utilizes a team of scouts for accelerated
search.

Decentralized methods, exemplified by Mouradian et al.
[15], utilize multi-objective optimization with inter-robot
communication. In contrast, our framework employs a
communication-independent ant colony algorithm for effi-
cient scouting.

Hybrid methods, like Liu et al. [5], combine autonomy
and human intervention, while a hybrid framework models
tasks as multiple traveling salesman problems [16]. Our
unique approach employs the A* algorithm independently
for diverse calculations.

Further classification of MRTA involves optimization-
based [14], [15] and market-based [16] approaches. Both
have strengths and weaknesses [10]. In our paper, we propose
the multi-stage multi-robot task assignment (MSMRTA) al-
gorithm, integrating both techniques for enhanced effective-
ness.

III. PROBLEM DESCRIPTION

Prior to allocating victim requirements to the rescue team,
essential information including location and requirements
must be gathered through a scouting session using a set of
uniform robots. These robots provide initial insights into the
rescue operation’s aspects such as victim count, locations,
and needs. The main problem addressed in this study is the
task allocation for a team of heterogeneous robots in a search
and rescue mission in a building. The proposed solution is
applicable to both homogeneous and heterogeneous robot
groups, accommodating missions with varying demands.
The introduced Multi-Stage Multi-Robot Task Assignment
(MSMRTA) framework combines optimization-driven and



market-based planning phases. A key aspect is the require-
ment analysis outlined in Algorithm 2, within which the
MSMRTA, including the A* path-planning algorithm for
navigating building obstacles, allocates victim requirements
to suitably capable robots. The framework’s central process
is illustrated in Algorithm 1, and assignment outcomes are
stored in designated variables (B2, B3, B4). Reproducibility
of results is facilitated through the open-source availability
of the implementation code’.

Algorithm 1: Search and Rescue framework includ-
ing Scouting, Multi Robot Task Assignment Analysis,
Optimization, and Bidding stages, and Path-Planning

Input: map, R (List of the Robots)

Output: Prioritized Path to each Victim

V < Scouting(map) // Victims’ information
Lful ppartal | ppotential o pegmentAnalysis(R,V)
Lunavailable . MissingCap(V, Lpotenlial)

C,C*™r « Clustering(K,V) // K-means
B2,V « ClstrAsgn(R,V, il ppatial (eenter)
Tsuccess’ Tfailure — PerfAnalys is (]%7 V7 Lparlial)
B3,V < VictimAssign(R,V,VTsuccess Tiailure)
B4 + RobotAssign(R,V,V, Lpoental)
Path-Planning(B2,B3,B4) [/ A*
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A. Scouting

In post-disaster emergencies, promptly assessing the en-
vironment provides vital victim distribution data [17]. We
employ a 2D gridworld simulation to model building layouts
and attributes (Fig.1).

sEsssssyssssssnsmsms B E szszsssssssssssssass
] EnsEEIsNEsEEEs B = EnsEsINEnINERsNEREEE
g == B= 5= Ex BEE  Bmommome Eesm
£ B . . RER S
Sumsmussmes EEms B & EzEs et
SEsssssssssss  gesss £ sEs=
EEEEINENSNEEE 2 SESEE SEsEENENE SosEEEsEs =% EEEE
SEsssssssssss  smsEs E = B sEmE
EEEnIREnEEE mEEE B = = EEEE
E = B = : E
& p o 2 e G &=
8 EEEs s = & Ererd
SEzmmmm msm susmsEsEs = &
5 EEE  EEENENENE = =
SEssssEsEssssssssnum B SxssEssssssmssEs 8
EEEEINEnsNEIsNsEREEE L e

Map 0 Map 1 Map 2 Map 3

Fig. 1: Four 20 x 20 maps used in our experiments. Obstacles have
been depicted in red.

Our Scouting function (Algorithml) uses the envi-
ronment map to yield victim information—ID, location,
requirements. Robots apply the ant colony grid search al-
gorithm [18], mimicking ant search strategies and prevent-
ing redundant coverage via a search table. Scouts possess
adaptable visual field depth (VFD) for victim detection,
adjusting to obstacles. A scout identifies victims within its
VED vicinity (Fig. 2), extracting details. Agents navigate by
moving forward, backward, right, or left in the grid.

B. Task Assignment
Inspired by the work in [7], we address the task assign-
ment problem in the context of a heterogeneous robot fleet.

! Github repository: https://github.com/hamidosooli/
Multi-Robot-Task-Assignment

Throughout the paper, we use the terms “tasks’ and ’victims’
interchangeably to refer to the same entity. The robots can
either completely fulfill the victim’s requirements or fulfill
part of the requirements, depending on their sensing and
actuating capabilities. In line with the arguments presented
in [10], we propose a hybrid multi-stage task assignment
framework integrating optimization and market-based meth-
ods. The proposed framework follows the taxonomy in [19]
and finds solutions for a group of single robot tasks (SR)
through time-extended assignment (TA) of the tasks to multi
task (MT) robots. To better describe our system, we have
created a list of capabilities/requirements for both the robots
and victims. For the robots, we represent these capabilities
as a binary vector, indicating which capabilities each robot
possesses. Similarly, we have created a binary vector for
the victims to represent their individual requirements (¢ in
Table I and p’ in Table II).

1) Victim Requirement and Robot Capability Analysis:
The RegmentAnalysis (Algorithm 2 and line 4 in Algo-
rithm 1) focuses on determining three key sets of information
through calculations. These sets include: victims that their
requirements can be fully met by a given robot (L),
victims that their requirements can be partially fulfilled by
a given robot (Lpartialy - and potential robots that can meet
a victim’s requirements (LP°"id) When a robot fulfills all

Algorithm 2: The RegmentAnalysis function
identifies victims fully satisfied (L™"), partially satis-
fied (LP*al) by a robot, and potential robots meeting
a victim’s requirements (potentialy

1 Input: P, @

2 Olltpllt: qull7 Lpa\rtial7 LpOtential

3 U < QP"// Matrix Multiplication

45« Z?LBI [:,4]  // nr = number of requirements
5 L'« (U >0) and (U ==15)

6 LPoial « (7 > 0) and (U < S)

7 for i in ( qull and Ll do

8 ‘ [ potential , Q[Z(O), 3} and Q[Z(l), ;]

9 end

victim requirements, the victim ID is included in the set
LMW' If a robot satisfies only a subset of victim require-
ments, the corresponding victim ID is added to the robot’s
LPatial et Conversely, robots capable of meeting a victim
requirement contribute their IDs to the LPOMial set for that
requirement. By representing victim requirements (¢) and
robot capabilities (p) in matrix form, the system performs
a matrix operation (Algorithm 2, line 3) to compare the
outcome with a larger vector encompassing all requirements
(S) (Exemplified in Tables I and II). These binary vectors
signify agent possession of each attribute. The algorithm’s

. . T T
inputs are matrices Q@ = [¢@ ,...,qrm -1 | and P =
[Po, - - -, pN—1] containing information, presented as matrices

to mitigate time complexity.
Using the data in LPOMidl the MissingCap function
(Algorithm 1, line 5) identifies instances where no suitable
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robots exist to fulfill specific requirements. Subsequently,
it appends the relevant victim IDs and requirements to
Lunavailable " accounting for deficient capabilities.

2) Clustering of Victims and Allocation of Victim Clusters
to Robots: In order to facilitate the task assignment process,
victims are grouped into clusters based on their map locations
using the Clustering function, employing the K-means
algorithm [20]. These clusters, equal in number to the
robots (K = NN), enable efficient robot-to-victim group
assignments for proximate victims.

Robot-cluster matching employs a linear assignment ap-
proach [8], our assignment formulation(Equation 1) incor-
porates two assignment weights: w/, (denoting victim re-
quirement sets fully satisfied by robot r in cluster ¢) and
wy. (indicating total victim requirements met by robot 7 in
cluster ¢) for NV robots and K clusters.

N-1K-1
max Z Z wTC—I—l/)w e
{xm} r=0 c¢=0
Nl 1)
d @ <1, Ve=0,1,.,K—1
=0
e € 0,1}, Vrc

The importance coefficient ¢ € [0, 1] balances fulfilling
victim’s requirements fully versus partially. A high v prior-
itizes robots in clusters satisfying one or more victims fully,
while a low 1 favors clusters partially meeting requirements
of more victims. Binary variable z,. decides robot assign-
ment to clusters. The equation’s second line ensures a cluster
is assigned to at most one robot [8].

Once robots join clusters, they move to cluster centers,
calculated as victims’ location averages. Manhattan distance
from center to victims guides prioritization within clusters.
The ClstrAsgn function (Algorithm 1 line 7) computes
this, storing result in B2.
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Fig. 2: Various steps of our proposed framework. The locations of
victims and scouts (left). Each scout’s Visual Field Depth (VFD)
has been plotted in orange. The output of the different assignment
stages (middle). The path planning step (right).

A clustering method that relies solely on location ([7],
[21]) can be insufficient because it may fail to account
for obstacles in the environment. For example, victims on
opposite sides of a wall may be grouped together in the
same cluster, leading to suboptimal robot travel times. To
overcome this issue, we devised a method that examines each
cluster for obstacles by comparing the Manhattan distance
from the cluster center to each victim with that of an empty

environment. If the distance in the empty environment is
greater than the distance in the environment with obstacles
(walls), it suggests the existence of an obstacle, and the
victim is excluded until the subsequent stage.

3) Analysis of Robot Performance and Reliability:
Robots’ performance in assigned clusters involves individ-
ual interactions with victims, either succeeding or failing.
Evaluating reliability relies on analyzing time allocation for
successful (72¢°*5) and unsuccessful (7141") tasks. Robot
reliability is computed to minimize both time categories, en-
hancing overall reliability. This optimization employs linear
assignment to manage busy time for N robots and M victims
using Equation 2. Binary variable z,, ensures exclusive
victim-to-robot assignment [8].

A coefficient 5 € [0,1] balances the time cost
trade-off. Success and failure times are calculated using
PerfAnalysis function (Algorithm 1 line 8). Subse-
quently, Vict imAssign (Algorithm 1 line 9) employs this
data to assign remaining victims to robots, stored as variable
B3.

M—-1N-1
min 1-— ﬁ TTS?)‘:CSSS + ﬁsz;)ilure Lo
B |
(2)
s.t. Zxrugl V’U:O,l,...,M—l
xru {0 1} V’/‘,U

4) Bidding Based on Distance: We employ the potential
robot list (LPMaly from the ReqmentAnalysis function
to match unattended victim requirements with the nearest
robot. The proximity is determined using Manhattan distance
computation among potential robots. This approach em-
ploys a sealed bid scheme wherein robots submit concealed
bids until auction culmination. The winner is the highest
bidder, which in this context is the closest robot to the
victim. The outcome, denoted as B4, is computed via the
RobotAssign function (Algorithm 1, line 10), ensuring
comprehensive fulfillment of victim requirements. Addition-
ally, we verify L™ to prevent duplication. Specifically, if a
robot is capable of fulfilling all of a victim’s requirements,
then that victim should not be assigned to any other robots.

C. Path-Planning

The Path-Planning function in Algorithm 1 line 11
uses the A* search algorithm, that is a widely used path-
planning algorithm and particularly well suited for grid-
based environments. A* calculates the shortest path from
the robot’s initial location to the assigned victim’s address
by taking into account both the distance traveled and the
estimated distance to the goal, also known as the heuristic
cost. In our system, we use the Manhattan distance as the
heuristic cost. The A* algorithm ensures that the robot’s path
is efficient, while also avoiding obstacles and ensuring safe
navigation. The calculated paths are then used by the robots
to navigate to the assigned victims.
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Fig. 3: Average planning time for the proposed algorithm (MSM-
RTA) on the left and the baseline algorithm (MRGA) on the right.

IV. RESULTS & DISCUSSION

In this section, we present the experimental results of our
proposed framework on Map 2. Ten victims with diverse
requirements (Table I) were assigned to four robots with
varying capabilities (Table II). The Ant colony algorithm was
employed by the scouting team for environment coverage
before assignment. All ten victims were successfully located,
and pertinent data such as ID, location, and requirements
were gathered and recorded for task allocation (Table I).
The Cluster ID in Table I indicates clustering outcomes
(Algorithm 1, line 6), while LP°idl denotes a require-
ment/capability analysis output (Algorithm 1, line 4). The
remaining columns exhibit scouting team-acquired victim
information.

TABLE I: Summary of victims’ locations, requirements, and
potential robots for fulfillment of the requirements, as well as the
corresponding cluster ID for each victim

Victim ID Location Cluster q [ potential
0 (16,7) Co 1[0,1,1,0,0,0]T [@,[0],[1],0,0,0]
1 (15,12) Co [0,0,0,1,1,0]" [0, ®,0,][0,3],[1,2],0]
2 6,5 C [0,1,0,0,0,1]7 [0,[0],0,0,0,0]
3 (11,4 Ca [0,0,1,0,1,0]7 [0,0,[1],0,[1,2],0,]
4 0, 1) C1 [1,1,0,0,0,0]T [[1,3],[0],0,0,0,0]
5 (14,14) Co 10,0,0,0,1, 1]T [0,0,0,0,[1, } 0]
6 (14,12) Co [1,0,0,0,1,0]7 [[1,3],0,0,0,[1,2],0
7 (3,16) Cs [1,0,0,1,0,0]" [[1,3],0,0,[0,3],0,0]
8 (10, 15) Co [0,1,0,1,0, 0]T [0, [0], 0, [0, 3], @, 0]
9 (0,12) Cs [1,0,0,0,1,0]7 [[1,3],0,0,0,1, ] 0]

This representation indicates that victim O has require-
ments that include the second and third items of the capa-
bility/requirement list, and robot O and robot 1 are potential
candidates to fulfill these requirements, respectively. Addi-
tionally, victim O is located at position (16, 7), which belongs
to cluster Cy.

TABLE II: Rescue Robots’ locations and capabilities. List of the
victims IDs whose requirements can be fully or partially met by
each robot, as well as the result of the victims IDs assigned to each
robot in each stage of the task assignment process.

Robot ID Location P Lfull Lpartial - Clyster
0 0,9 [0,1,0,1,0,0]T 8] [0, 1,24, 7] C&"r
1 (0, 10) [1,0,1,0,1,0]" [3,6,91[0,1,4,5,7] 0
2 19, 9) [0,0,0,0,1,0]7 0 [1,3,5,6,9] 0
3 (19, 10) [1,0,0,1,0,0]7  [7]1 [L, 4,6, 8, 9] Cgner

Table II shows robot O’s capabilities and assignments.
Victims 2 and 5 have unavailable requirements as indicated
by Lunavailable "Fjg 2 jllustrates assignment stages with color-
coded outcomes. Robot 2 lacks clusters in B2 but gains
tasks in bidding. Initially, robot O is assigned to victim 8§,
later adjusted for spatial constraints. Redundancy in B4 is
minimized, except for nearest qualified robot.

Our MSMRTA algorithm was evaluated against Carreno et
al’s MRGA on 2 to 10 robots, 10 to 100 victims, and 4 maps.
MSMRTA reduces planning times significantly: 97.70%,
97.00%, 96.93%, and 97.34%. Planning time increased with
more robots and victims: 92.26%, 31.80%, 80.85%, and
39.89%. Fig. 3 depicts these outcomes, highlighting MSM-
RTA’s potential in enhancing search and rescue efficiency.

V. CONCLUSION & FUTURE WORK

This paper introduces a novel search and rescue framework
integrating scouting, multi-stage multi-robot task assignment,
and path-planning. The framework leverages robot capabili-
ties and victim requirements during scouting, optimizing task
assignment based on this data and robots’ past performance.
Notably, it accommodates multiple assignments by different
robots to fulfill all requirements. The framework’s effective-
ness was validated through simulations, exhibiting a 97%
average reduction in planning time and overall performance
enhancement. Future work entails refining clustering tech-
niques, analyzing environment maps, exploring influencing
factors, and validating the algorithm via real-world experi-
ments with diverse robotic fleets.
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