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Abstract— We present an approach to ensure safe and
deadlock-free navigation for decentralized multi-robot systems
operating in constrained environments, including doorways and
intersections. Although many solutions have been proposed to
ensure safety, preventing deadlocks in a decentralized fashion
with global consensus remains an open problem. In this work,
we first formalize the above multi-robot navigation problem
in constrained spaces with multiple conflicting agents, which
we term as social mini-games. To solve social mini-games, we
propose a new class of decentralized controllers that ensure both
safety and deadlock resolution by attaining a game-theoretic
Nash equilibrium. Our controller builds on two key insights:
first, we reduce the deadlock resolution problem to solving a
modified version of an N-player Chicken game, for which a
Nash equilibrium solution exists. Second, we formulate the Nash
equilibrium as a control barrier function (CBF) and integrate
it with traditional CBFs to inherit their safety guarantees.

We evaluate our proposed game-theoretic navigation algo-
rithm in simulation as well in the real world using F1/10 robots,
a Clearpath Jackal, and a Boston Dynamics Spot in a doorway,
corridor intersection, roundabout, and hallway scenario. We
show that (i) our approach results in safer and more efficient
navigation compared to local planners based on geometrical
constraints, optimization, multi-agent reinforcement learning,
and auctions, (i7) our deadlock resolution strategy is the
smoothest in terms of smallest average change in velocity and
path deviation, and most efficient in terms of makespan (i:7)

our approach yields a flow rate of 2.8 — 3.3 (ms) ! which is
comparable to flow rate in human navigation at 4 (ms) ',

I. INTRODUCTION

We consider the task of multi-robot navigation in con-
strained environments such as passing through narrow doors
and hallways, or negotiating right of way at corridor inter-
sections. We refer to these types of scenarios as social mini-
games. Unlike humans, robots often collide or end up in a
deadlock due to several challenges arising in social mini-
games. Two key challenges, in particular, demand attention.
First, without some form of cooperation, decentralized sys-
tems, even with perfect local sensing, result in deadlocks,
collisions, or non-smooth trajectories. Second, humans are
adept at avoiding collisions and deadlocks without having
to deviate too much from their preferred walking speed or
trajectory, also referred to as private incentives. This type of
behavior presents a significant challenge for robots, which
struggle to emulate such socially adaptive maneuvers while
maintaining a consistent preferred velocity. The objective of
this paper is to propose a safe, deadlock-free, and incentive
compatible navigation algorithm for multiple robots in social
mini-games.

The goal is for robots to navigate in such social mini-
games as humans do as much as possible. More formally,
navigation algorithms must guarantee safety, liveness, and
obey kinodynamic constraints. Although multi-robot nabiga-
tion encompass a vast range of algorithms, we narrow our
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focus to algorithms that have been applied to social mini-
games either on real robots or in simulation. These include
methods based on deep reinforcement learning [1], [2], [3],
[4], multi-agent path finding [5], trajectory prediction [6],
game-theoretic distributed optimization [7], auctions [8],
geometric planning [5], [9], [10], and other optimization-
based methods [11], [12], [13], [14], [15]. None of these
methods satisfy all of the necessary conditions for optimal
multi-robot navigation in social mini-games. In the literature
on multi-robot navigation for social mini-games, typically,
the problem is that algorithms are either collision-free or
deadlock-free, but not both. In a similar vein, algorithms
that perform well in simulation, fail when deployed on real
robots [16].

Main Contributions: This paper presents a provably
safe and deadlock-free multi-robot navigation algorithm for
robots with double-integrator dynamics in social mini-games,
such as navigating through a narrow door or negotiating right
of way at a corridor intersection. Our algorithm is fully
decentralized and assumes partial observability. Our main
contributions include:

1) A new class of decentralized controllers that ensure
both safety and liveness by attaining a game-theoretic
Nash equilibrium and can be added to any constrained
optimization-based local trajectory planner

2) Our controller builds on two key insights: first, we reduce
the deadlock resolution problem to solving a modified
version of an N-player “Chicken” game, for which a
Nash equilibrium solution exists. Second, we formulate
the Nash equilibrium as a control barrier function (CBF)
and integrate it with traditional CBFs to inherit their safety
guarantees, while simultaneously imbuing it with liveness
guarantees.

We show that (i) our approach results in safer and more
efficient navigation compared to local planners based on geo-
metrical constraints, optimization, multi-agent reinforcement
learning, and auctions, (i) our deadlock resolution strategy
is the smoothest in terms of smallest average change in
velocity and path deviation, and most efficient in terms of
makespan (¢iz) our approach yields a flow rate of 2.8 — 3.3
(ms)~! which is comparable to flow rate in human navigation
at 4 (ms)~!.

II. RELATED WORK
A. Collision Avoidance

Provable safety can be achieved by single-integrator sys-
tems e.g. ORCA framework from Van Den Berg et al. [10]
and its non-holonomic variant [9], which are effective for
fast and exact multi-agent navigation. ORCA conservatively
imposes collision avoidance constraints on the motion of a
robot as half-planes in the space of velocities. The optimal
collision-free velocity can then be quickly found by solving
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a convex optimization problem through linear programming.
The original framework limits itself to holonomic systems
but has been extended in [9] to model non-holonomic con-
straints with differential drive dynamics. ORCA also gen-
erates collision-free velocities that deviate minimally from
the robots’ preferred velocities. The major limitation of the
ORCA framework is that the structure of the half-planes so
constructed often results deadlocks.

Exact safety is harder to prove for higher-order dynamics
such as double-integrator dynamics, therefore safety in these
systems depend on the planning frequency of the system.
For example, the NH-TTC algorithm [15] uses gradient
descent to optimize a cost function comprising of a goal
reaching term and a time-to-collision term, which rises to
infinity as the agent approaches immediate collision. NH-
TTC guarantees safety in the limit as the planning frequency
approaches infinity. Other optimization-based approaches use
model predictive control (MPC) [14] and safety depends not
only on the planning frequency but also on the length of the
planning horizon.

Finally, control barrier functions (CBFs) [11], [13] guar-
antee safety via the notion of forward invariance i.e. if an
agent starts out in a safe set at the initial time step, then it
would be safe for all future time steps.

B. Deadlock Resolution Methods

Deadlocks among agents arise due to symmetry in the en-
vironment that may cause conflicts between the agents [11],
[14], [17]. To break the symmetry, and escape the deadlock,
agents must be perturbed, which can be done in several ways.
The most naive, and easiest, way is to randomly perturb each
agent [13]. Random perturbations can be implemented in
decentralized controllers and can generalize to many agents,
but are sub-optimal in terms of path deviation and overall
cost. Next, there are several recent efforts to choreograph
the perturbation according to some set rules such as the
right-hand rule [14], [18] or clockwise rotation [11]. These
strategies improve optimality over random perturbation and
even give formal guarantees, but the imposed pre-determined
ordering limits their generalizability; many cannot general-
ize to more than 3 agents. Another line of research aims
towards deadlock prevention rather than resolution where
an additional objective is to identify and mitigate potential
deadlocks, even before they happen, such as in [14].

Another class of deadlock resolution methods rely on
priority protocols and scheduling algorithms similar to those
used in the autonomous intersection management litera-
ture [19]. Some prominent protocols include first come
first served (FCFS), auctions, and reservations. FCFS [20]
assigns priorities to agents based on their arrival order at the
intersection. It is easy to implement but can lead to long
wait times and high congestion if multiple vehicles arrive at
the intersection simultaneously. In auctions [21], [22], agents
bid to cross the intersection based on a specific bidding
strategy. Reservation-based systems [23] are similar to the
auction-based system in which agents reserve slots to cross
the intersection based on their estimated arrival and clearance
times.

As noted by recent researchers [14], [18], developing
a provably optimal, decentralized, and general deadlock
resolution technique is currently an open problem. In this
work, we take a large step forward towards a solution.

C. Learning-based Approaches

We refer the reader to [24] for a recent survey on the
state-of-the-art of learning-based motion planning. Deep re-
inforcement learning (DRL) has been used to train navigation

policies in simulation for multiple robots in social mini-
games. Long et al. [1] presents a DRL approach for multi-
robot decentralized collision avoidance, using local sensory
information. CADRL [2], or Collision Avoidance with Deep
Reinforcement Learning, is a state-of-the-art motion planning
algorithm for social robot navigation using a sparse reward
signal to reach the goal and penalizes robots for venturing
close to other robots. Planning algorithms that use trajectory
prediction models [6] estimate the future states of the robot
in the presence of dynamic obstacles and plan their actions
accordingly.

D. Game-theoretic Distributed Optimization

Another class of methods for multi-agent planning for
self-interested agents includes distributed optimization in
general-sum differential games. The literature on general-
sum differential games classify existing algorithms for solv-
ing Nash equilibria in robot navigation into four categories.
First, there are algorithms based on decomposition [25], [26],
such as Jacobi or Gauss-Siedel methods, that are easy to
interpret and scale well with the number of players, but
have slow convergence and may require many iterations
to find a Nash equilibrium. The second category consists
of algorithms based on dynamic programming [27], such
as Markovian Stackelberg strategy, that capture the game-
theoretic nature of problems but suffer from the curse of
dimensionality and are limited to two players. The third
category consists of algorithms based on differential dynamic
programming [28], [29], [30], [31], [32], [33] that scale
polynomially with the number of players and run in real-
time, but do not handle constraints well. Lastly, the fourth
category contains algorithms based on direct methods in
trajectory optimization [7], [34], [35], such as Newton’s
method, that are capable of handling general state and
control input constraints, and demonstrate fast convergence.
The algorithms described above give an analytical, closed-
form solution that guarantees safety but not liveness, and
does not model self-interested agents. Additional limitations
include the lack of deployability in the real world and the
requirement of full observation.

III. PROBLEM FORMULATION AND BACKGROUND

In this section, we begin by formulating social mini-games
followed by stating the problem objective.

A. Problem Formulation

We formulate a social mini-game by augmenting
a partially observable stochastic game (POSG) [36]:

k, X, {Q1}, {0} AT, T, {L{i},{ji}> where k denotes
the number of robots. Hereafter, ¢ will refer to the index of a
robot and appear as a superscript whereas ¢ will refer to the
current time-step and appear as a subscript. The general state
space X (e.g. SE(2), SE(3), etc.) is continuous; the i robot
at time ¢ has a state z; € X. A state z; consists of both
visible parameters (e.g. current position and velocity) and
hidden parameters which could refer to the internal state of
the robot such as preferred speed, preferred heading, etc. We
denote the set of observable parameters as ;. On arriving at
a current state xy, each robot generates a local observation,
0j € 0, via O : X — QF, where O (z}) = {xi,fﬁ} for
all j € NV (z), the set of robots detected by i’s sensors. Over
a finite horizon T, each robot is initialized with a start state
ry € X7, a goal state xf, € X, where X; and X; denote
the sets containing the initial and final states. A discrete
trajectory is specified as the vector I'" = (x%, xy,. .. ,xif)



and its corresponding input sequence is denoted by Ul =
(uh,ui, ..., uf_). We denote I'" as the set of preferred
trajectories for robot i that solve the two-point boundary
value problem. More formally, due to the local Lipschitz
continuity assumption on f and g, for every state xt eI,
there exists ¢’ < T such that 2} € R (:vt,l/l’ ) N T, where
R (2i,U’, 1) is the set of reachable states from x} traveling
for time ¢'. A preferred trajectory refers to a trajectory a robot
would follow in the absence of dynamic or static obstacles
and is generated via a default planner according to some
predefined criteria such as shortest path, minimum jerk, etc.
The transition function is given by 7 : X xU* — X, where
ul € U* is the continuous control space for robot i. Robots
follow the control-affine kinodynamics,

&' = [ (21) + g (21) ui (1)
where {) and g are locally LlpSChltZ contmuous functions.
Each robot has a running cost [J* x U" — R that

assigns a cost to a control u} at each tlme step based on (%)
distance of the robots current position from the goal, (1)
change in the control across subsequent time steps and (4i%)
difference between the robots preferred and actual paths.

In addition to describing the tuple above, we also define
a collision. Represent the space occupied by robot ¢ (as a
subset of the state space &) at any time ¢ by its convex hull
as C? (m%) € X. Then, robots ¢ and j are said to collide at

time ¢ if C* (z}) N CJ (xi) # (. Finally, we define a social
mini-game as follows,

Definition 1. A social mini-game occurs if for some § €
R>C and integers a, b € (0,T) with b—a > 6, there exists

at least one pair i, j,1 such that for all T? € FZ ¥ eI,
we have C' (x}) NCJ ﬁ £ 0¥t € [a,b], where zi, x] are
elements of ", T7 € fi, I,

We depict several examples and non-examples of social
mini-games in Figure 1. The first scenario can be character-
ized as a social mini-game due to the conflicting preferred
trajectories of agents 1 and 2 within a specific time interval
[a,b] € T, where the duration b — a > 4. In this case, the
agents’ trajectories intersect and result in conflicting paths.
However, the second and third scenarios, in contrast, do
not qualify as social mini-games since no conflicts arise
between the agents. In the second scenario, there is no
common time duration where agents intersect each other,
and their trajectories remain independent in time. In the third
scenario, agent 2 possesses an alternative preferred trajectory
that avoids conflicts during any time duration, allowing for
a seamless transition to a conflict-free path. A robot has the
following best response in a social mini-game,

Definition 2. Best Response Sfor a Robot in Social Mini-
Games: For the i’ " robot, given its initial state %, an optimal
trajectory I'"* and corresponding optimal input sequence
U™ is given by,

T-1
(I‘i’*, \I/i’*) =arg (lg{nanl ZO T (mi, uz) + Tk (J:?f) (2a)
st xy g =f(a}) +g () u, VteE[;N—1] (2b)
C'(z})nc? (z?) =0VjeN(z}) (20
xy € X; (2d)
xp € X (2e)

Fig. 1: Examples/Non-examples of social mini-games: The first
scenario is a social mini-game since both the preferred trajectories
of agents 1 and 2 are in conflict from some ¢t = a to ¢t = b where
b — a > 6. The second and third scenarios are not social mini-
games as there are no conflicts. In the second scenario, there is no
common duration where agents intersect one another. In the third
scenario, agent 2 has an alternate conflict-free preferred trajectory
to fall back on.

where Equation 2b is a discretized version of Equation 1
and J7 is the terminal cost. At this point, we are ready to
state our problem objective.

Problem 1. Optimal Navigation in Social Mini-Games: A
solution to optimal navigation in social mini-games is a tuple
(1"1’*7 2> ... ,Fk’*)

The objective function [J* captures the cost of a robot
deviating from its preferred trajectory between the robot ¢’s
current position and the position in the preferred trajectory
at time t € [0,7). A2n example of such a cost function is
7 (z) = |t~ 7.

In practice, the optimization 2 can be solved optimally
(if a solution is reached) via a Dynamic Window Approach
(DWA) [37], Model predictive Controller (MPC) [38], Con-
trol Barrier Functions (CBF) [39], among others. Let %" C
U* be the set of controls such that Equation 2¢ holds and
robot 7 is collision-free. Further, let 7 € IC refer to a chosen
controller (MPC, DWA etc.) chosen by agent i, where K
denotes the set of possible controllers.

In social mini-games, %, often ends up being an empty
set resulting in deadlocks [13], [14], [18]. As in previous
work [11], [13], [17], we define a deadlock as follows,

Definition 3. Deadlock: A robot i executing the controller
given by Equation 2 enters a deadlock if, starting at time t,
u} = 0 for some fixed time period 3, while =} ¢ X,.

If agent ¢ is assumed to be traveling along I, then
system | is small-time local controllable giving the following
corollary,

Corollary 1. If at time t, z% € T and there is no social
mini-game occurring at t, then agent i is not in a deadlock.

Proof. If there is no social mini-game occurring at time ¢,
then by definition 1, there exist some I'? that is not in conflict
with any other agent j. Also by definition of a preferred
trajectory, for every state xi € T, 3’ < T such that z} €
R (z_,, U t'") NT?, where R(xt v, U 1) is the set of
reachable states from xt_t, traveling for time t'. Then a:T €
R (xi_,, U, #')NT? for some «}_,,,¢'. System 1 is therefore
small-time local controllable if agent ¢ follows I, implying
that a deadlock does not occur. O

Resolving these deadlocks typically involves perturbing



the robots via a perturbation. Commonly used strategies for A
include randomly perturbing [13], [40] the position of a robot
causing it to deviate from its preferred trajectories resulting
in a sub-optimal controller.

B. Control Barrier Functions

The safety of a set 4" is closely related to its forward
invariance which is a property that requires the system (1)
solutions starting from a given set of initial conditions to
remain in a desired safe region %" for all ¢ > 0. The basic
idea behind CBFs are as follows. Consider a scalar valued
function, h* : X — R over the set of states z; € X such
that the following holds true:

¢ = {a} e R"|h' (z}) >0} (3a)
W (z}) =0V aj € 9¢" (3b)
h'(z}) <0Vai eR"\ % (3c)

where € is the safe set and 9¢" denotes the boundary of
%". The time derivative of h' (z}) along the state trajectory
of agent ¢ (1) is given as

d (ht (¢ o S

L) o ) Lo )k
where Lyh' (zi) and Lyh' (z) denotes the Lie derivatives
of h' (x}) along f and g respectively. Then h* (z}) is a CBF

if there exists a class Ko,' function & such that the following
holds true

sup Lk (xi) + L,k (xi) up + K (hi (xi)) >0 (5
uy €U

‘We define the safe or collision-free control space over
x; € X as the set of controls u; € %' C U such that
the following holds

Lgh' () + Loh' (2}) uj + 5 (k' (27)) >0 (6)

The set %/ that guarantees safety is given by

' = {up €U |Lgh' (1) + Loh" (1) u + (I (a7)) 2 0}

)

Equation 6 is known as the safety barrier constraint or
safety barrier certificate. In summary, the set 4* C X
(defined by (3)) is guaranteed to be safe if the control input
set 2" (defined by (7)) is non-empty and u} € %°.

IV. GAME-THEORETIC DEADLOCK RESOLUTION

A state is represented as x; at time t of which
pi 0 vl wi € R? x S x R? x R represent the current
position, heading, linear and angular rates of the i™ robot.
We propose a perturbation strategy that can be integrated
as a CBF constraint and combined with existing controllers,
such as MPC or DWA, to resolve deadlocks. Our perturbation
strategy is designed to ensure that:

1) the robot does not deviate from the preferred trajectory.

2) the robot performs the perturbation in a decentralized
fashion.

3) the robot deviates minimally from its current velocity.

We design a perturbation that acts on v;, and not on pj,
through the notion of liveness sets, which are analogous to
the safety sets in CBFs. More formally,

A function () : R — R belongs to the class of Koo functions if it is
strictly increasing and in addition, «(0) = 0 and gm a(r) = 0o
T oo

Fig. 2: Liveness set(%,(t)): for the 2 robot scenario for social mini-
games at doorways.

Definition 4. At any time t, given a configuration of k robots,
xy € X for i € [1,k], there exists a union of convex sets,

. . T
%:(t) € R* of joint velocity v, = [v},v7,...,vF]  such
that if v, € 6;(t), then a social mini-game does not occur
at time t. We call €,(t) a liveness set.

If every agent at ¢ = 0 is collision-free, then perturb ul
for all i such that R (zf,U*, At) NT* # R (z},U*, At) N
I and C' (7)) N CI ig) # 0Vt e [tt+ At], where
Tiar € R (F,UP, At) NTY. Trivially, one possible choice

is ul = 0 for all j # i so that R(%{,W,At) N =

ixg} and C* (z}) N C (Eﬁ) # 0V te[tt+ At] where
t < . Consider the resulting set of velocities as ) =
(vf,v?,...,vf) that precludes a social mini-game. ) can
be convexified by taking the convex hull conv (). Now, we
permute the order of agents k!, each resulting in a different
convex hull. We take the union of these convex hulls.

Definition 4 and Corollary 1 imply that if each v; is such
that the joint velocity v; € €;(t), then there is no deadlock.
If, however, v; ¢ 6;(t), then robot ¢ will adjust v} such that
vy is projected on to the nearest point in % (t) via,

U, = arg min ||vy — 8
t g#e%(t)H t N”z (8)

Observe that a solution to 8 achieves the first and third
objective, that is, agents do not deviate from their preferred
path and the new joint velocity v; is such that agents deviate
minimally from their current joint velocity v,. Towards
the second objective, we show that each agent selects a
perturbation strategy that constitutes a Nash solution to a
variant of the well-known Chicken game.

Example 1 (two agents): While our approach generalizes to k
robots, we consider an example with 2 robots for simplicity.
In the 2 robot scenario where each robot is equidistant from
a doorway or intersection, the liveness set €?!. shown in

1
Figure 2, is generated by scaling v? by %, or vice-versa.

Empirically, it is observed that ¢ > 2. We can then generate
the following system of linear inequalities,

v > (v}
vf > (ot

This can be compactly represented as

Asyove >0 &)



and v; = [vtl, vf]T. Suppose the

¢ 1
current value of v, is p; as shown in Figure 2. The point
vy 1 indicates that Asyov1 < 0 which lies outside %p(t),
implying that the two robots are in a deadlock according to
Definition 4 and Definition 3. Equation 8 projects v; ; onto
the nearest half-plane which is the v} = (v? barrier. Thus,
robot 1 will increase v!' and robot 2 will decrease v2 by
projecting v;; down on v} = (v?. This projection is the
minimal deviation required on the part of both robots and is
therefore optimal.

Equation 9 can be used to generate the liveness set %;(t)
as,

where Agy o = l_l C}

Go(t) = {ve s.t. hy (z) > 0}
hv(fﬂt) = Akxk (%)
where h,, (z) is the CBF of %, (¢) that ensures the forward

(10)

o T

invariance of €,(t), x; = [pf,vf,0f wi,p},vf, 07, wi]
T :

and controls, u; = [uf,u?| . Following the 2 agent

example, we can expand the matrix Asyo as Asyxg =
0 1 000 —C 0O
0 -¢ 000 1 0O
gregate of both the robots’ states and controls. Combining
Equation 10 with Equation 6 using general control-affine
dynamics in Equation 1, we can derive the game-theoretic
safety barrier constraint. As h, (x;) is a vector field (as
opposed to a scalar-valued function),

Lihy (24) + ueLghy () + £ (hy (2¢)) >0 (11)

where the Lie derivatives of h,(z;) along f and g and
inequality above are performed element wise. The best
response, (I'*, U%*), in Equation 2 can be solved by adding
Equation 10 in constraint 12c as follows,

to accommodate the ag-

T-1
arg min (wi — %@)T Q (JL’Z5 - Ei) +

: (12a)
(1"%71117,) T . . .
(ui) Ruy+ Jp (a7)

t=0

st zi oy =f(2}) +g(z})ui, VEE[;N—1] (12b)
B (x;) ul > C (x%) (12¢)
C' (zi) NI (xg) =0 VjeN(zi) (12d)
(12¢)
(12f)

where ) >~ 0 and R >~ 0 are positive definite matrices and
constraints (12b)-(12d) must be enforced at all times. B (ac%)
and C (z}) are given by

_ on(ai)

xéGXT;
x%e){g

B (mizf) - Ort g (‘Tzlf) ) (138.)
. oh (i . .
Car) = - af” ACARRACHR (13b)

t
i 111 i, N—1 i T

h’ (xt) = |:h’5(xt7 )a sy hs(xt/ )7 hU (xt):| ) (13C)
he (27) = ||pi v
I (UUt) = Akxk (xt)

where h(z!”) represents the CBF for the agent i which
ensures that agent ¢ does not collide with agent j by

—r2Y je[;N]\i

(13d)
(13e)

2
2

maintaining a safety margin distance of at least r. In addition,
hy(x}) avoids the problem of deadlocking as v, € %;(t)
implies non-existence of a social mini-game. The inverse,
however, may not hold true. That is, vy ¢ %;(t) may not
necessarily result in a social mini-game. For example, two
agents equidistant from a doorway with equal speeds may
prefer to travel parallel to each other. Therefore, perturbing
agents’ speeds via Equation 8 only if v, ¢ %(t) may
be an overly conservative approach. We thus introduce the
liveliness function ¢; (p}, v{) for agent i with respect to the
agent j as follows:

i J oo J
<pt_37tavt_vt>

where (vf,v{) denotes the dot product between vectors v;

and v} and € > 0 is to ensure that the denominator is non-

negative. Note that ¢; (pi,v}) € [0,7] and ¢; (z},v]) <
Liesh implies that ¢ and j are on a collision course. We
claim that ¢; (z},v]) < fpesn is a sufficient condition to
establish the existence of a social mini-game since according
to Definition 1, a social mini-game implies that at ¢ = a,
there is a collision marking the beginning of the social mini-
game. That is, 3z}, z for t < a such that £; (2%, v}) < lipresn.

In contrast to traditional CBFs where the CBF h(z!) is
usually a function of spatial coordinates such as position
only, our proposed CBF h(x}) in (13c) is a function of both
position hs(z;”) (defined in (13d)) and velocity hy,(z;) (de-
fined in (13e)). Unifying these constraints in the formulation
of CBF enables robots to simultaneously prevent collisions
and deadlocks. Furthermore, for cases of single integrator
dynamics where v; is a input, the constraint Av; (where
vy = [v}, v2]T for two agents) can directly be incorporated
in the optimization problem. However in cases of double
or higher integrator robotic systems (such as bipedal robots
[41], Boston Dynamics Spot etc.), since vy is also a state,
guaranteeing the invariance of the set Agy,v; > 0 becomes
non trivial.

(14)

N |vE — vl || + €

Ej(pi,ui) =cos! -
‘pi -

Theorem 1. Equation 8 is a mixed-strategy Nash Equilib-
rium solution.

Proof. 1t is known that the classical Chicken game has
a mixed-Nash solution when both agents “swerve”. We
consider the deadlock resolution strategy as solving a version
of the Chicken game-if neither agent perturbs their state, then
a social mini-game will occur, resulting in a deadlock. The
only other alternatives are for either or both of the agents
to perturb their current state. As the optimal perturbation
solution to Equation 8 requires both the agents to perturb
their velocities, it corresponds to the mixed-Nash solution of
the Chicken game. O

Remark: For v} # v] for all 7, j, there is always a unique
mixed-Nash solution. Consider in example 1 that robot 1
decides to deviate from its current speed in v, ; and decides
to decrease its speed, shown by the new point v; 2. In that
case, robot 2’s optimal strategy will no longer be to decrease
its speed as before. Now, the nearest safety barrier becomes
v} = (v!, and to project v; o to this barrier, robot 2 will
instead increase its speed. Therefore, assuming a robot does
not deviate from its current speed, there will be a unique
projection to one of the safety barriers. If v} = v] for some
1,7, then there are multiple mixed-Nash solutions and we
implement the following tie breaking protocol [42].



V. EVALUATION AND DISCUSSION

In this section, we deploy our approach in both simulated
as well as real world social mini-games occurring at door-
ways, hallways, intersections, and roundabouts, and investi-
gate the following questions—(¢) is the proposed navigation
algorithm better at avoiding deadlocks and collisions than
the state-of-the-art? (i7) how does the proposed navigation
system compare to different approaches such as multi agent
reinforcement learning? (4i4) is our controller robust to
the choice of different kinodynamic local planners? and
finally, (iv) how does our game-theoretic deadlock resolution
strategy compare to alternative perturbation strategies?

A. Experiment Setup

We numerically validate our approach on differential drive
robots in social mini-games that occur at doorways, hallways,
intersections, and roundabouts, and analyze its properties. We
use the IPOPT solver [43] for solving the MPC optimization.
We consider the following differential drive robot:

1,1 i

P cos ((b) 0 0 0 Vi

D sin ((bL) 0 O 0 i

o | = 0 1 0 0 “ol,as)
i 0 0 1/m 0 o

w' 0 0o o I 2

where subscript i denotes the i™ agent, m and I are the mass
and inertia respectively, p! € R and p"? € R represent
the horizontal and vertical positions of the robot, ¢ € S!
represents its orientation, [v*, w'] € U* are the linear and
angular velocity of the robot respectively and u® = [uy, )™
is the control input. Let the discrete dynamics of (15) be
given by

T = f (21) + 9 (2)) w (16)
where the sampling time period T = 0.1s, xi =
[phl, pb2, ¢!, vl W is the state and ui = [u;, up]t is
the control input. The objective is to compute control inputs
that minimize the following cost function,

= T T
min g xy Qi +u; Ruy
U1:T—1 —
t=0 (17)

st zi=f(z})+g(2)ui, Vtel,..., T-1
T €EX, up €U Ve {l,..., T}

The safety for the differential drive robot is guaranteed by
the CBF constraint (10) For each agent, the CBF for the

obstacles is characterized by h, xi’m

hs (mim) = (p"' -

where 7 > 0, z¢ is specified by pi, i v wi € R? x St x
RZxR representing the current position, heading, linear and
angular rates of the i™ robot and (cy m,Ca,,) is the center
for circle of radius » > 0 and m € {1,..., M} where M
is sufficiently large to cover all the obstacles. Therefore, the
points lying in the safe region are characterized by the set
X given by

given by

Cl,m)2 + (pi,l _ Cz,m)2 g (18)

X = {x;’: hy (;v;*m) >0, vme{1,...,M}} (19)

Further to avoid collisions with another agent, each agent @
treats the other agent j (i # j) as an obstacle. Consequently,
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Fig. 3: Liveness sets for 2 F1/10 car platforms, the Clearpath
Jackal robot, and the Boston Dynamics Spot robot, in the doorway
scenario.

the CBF for agent ¢ is given by Equation 13d. The game
theoretic CBF h,, (z;) for an agent i is given by

hv(ﬂji) = A?Jt, i 7&.7
where v; = [vf, v/]T, A € R**? . For our doorway and

intersection simulations, we choose A = [_% :% .

(20)

B. Environments and Hardware

Real World- In a 3x3 meter space, experiments were
carried out involving two social mini-games at a doorway
and intersection. The tests employed three distinct robots:
UT Automata F1/10 car platforms, Clearpath Jackal, and
Boston Dynamics Spot. Each robot was chosen based on its
unique shape, size, and kinodynamic properties. The Spot
functions with legs, whereas the Jackal and F1/10 platforms
are wheeled, with the Jackal capable of point turns. They
have speed capacities of 1.5 m/s and 9 m/s respectively.
Notably, the larger robots couldn’t detect the cars due to their
lower height. The navigation algorithm was benchmarked
against a classical DWA planner.

Simulation-We compared our methodology with NH-
TTC [15] and NH-ORCA [9] using the SocialGym 2.0
simulator [44], available on Github?. We also tested multi-
agent reinforcement learning baselines such as CADRL,
CADRL(L), and Enforced Order. The CADRL [2] frame-
work and its LSTM variant, CADRL(L), provide rewards for
reaching goals while penalizing for collisions or excessive
proximity to other robots. Enforced Order is designed to
promote social behaviors like queuing. Evaluation metrics
used include success rate, time still, and average A velocity.

C. Liveness Sets

We generated the liveness sets empirically for both 2-agent
and 3-agent social mini-games at doorways and intersections.
This involves deploying robot combinations at different
speeds in these mini-games, and the range of velocities
resulting in safe navigation forms the empirical liveness set
for each mini-game. Doorway with 2 F1/10 Cars. From
Figure 3a, during 5 trial runs averaged over 3 iterations,
3 were successful and 2 failed. Success correlated with
velocities adhering to Equation 9. When velocities didn’t
align with this equation, failures occurred. Intersection
Scenario. Cross Robot Platforms. Validating Equation 9’s
applicability beyond specific robot models, Figure 3¢ shows
experiments involving the Spot and the Jackal robots in
the doorway scenario. This mirrored setups using F1/10
platforms.

D. Real World Experiments

Multi-robot setting-Doorway Scenario. A gap size of
about 0.5 meters was set. Robots started from one end

Zhttps://github.com/ut-amrl/social_gym
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Fig. 5: Deployment in human-robot environments.

of the doorway and aimed to move to the opposite side.
Their starting positions were either equidistant from the gap
(about 1.8 meters apart) or staggered. Corridor Intersection
Scenario. The width for the four arms of the intersection
was set between 1.5 and 2 meters, with a central conflict
zone of 2.5 to 4 square meters. A standard autonomous
navigation test was executed with one robot per intersection
arm. A robot could choose any of the other three arms as its
destination.

Our navigation system performed comparably to human

navigation. Humans typically move at 1.4 m/s at busy
intersections, as per studies [46], [47]. The robots in our
tests moved at about 1.25 - 1.5 m/s, exhibiting a flow rate
of 2.8 - 3.3 (ms)~ L.
Human-robot setting—We mirrored the multi-robot doorway
test, but with human-robot interaction. Our navigation algo-
rithm was evaluated against a classical DWA planner. In the
multi-robot context, outcomes are detailed in Figure 3. DWA
planner outcomes aren’t shown since robots consistently
failed due to collisions or deadlocks. Success or failure
of each trial is reported in Figure 3 with the associated
makespan times.

E. Simulation Results

Utilizing the game-theoretic MPC-CBF controller, we
showcased its application in doorway and intersection scenar-
ios, highlighting a yielding behavior from the green agent to
the red one. When compared to the traditional MPC-CBF, our
method deftly avoids deadlocks arising from environmental
symmetries by making minimal velocity adjustments that
align with the Nash equilibrium strategy. This change is
triggered by a liveness function when a potential deadlock
situation is anticipated. Notably, standard motion planners
often result in deadlocks in symmetrical environments. Our
algorithm, when compared with DWA and multi-agent re-
inforcement learning baselines, notably outperforms them.
The DWA performed poorly, corroborated by our real-world
tests. Our technique also ensures minimal velocity variations,
exemplifying smooth navigation. Interestingly, the deadlock
solution can be integrated with various controllers without
affecting performance.

Baseline ~ Success Rate Coll. Rate Stop Time Avg. AV
CADRL [2] 32 £3.125 0.00 +£0.000 222 4 2.749 13 £1.905
% CADRL(L) [3] 0+ 0.000 0.124+0.000 436 +0.318 36 £ 3.042
S Enforced Ordering 44 +2.993 0.16 +0.243 617 +1.803 1174 0.686
a DWA 4+0.244 2.324+0.589 166 + 4.496 30 £ 2.506
Auction-based 76 + 2.270 0.174+0.012 110 +4.100 6+1.111
Game-theoretic QP-CBF  100+0.000 0.00-£0.000 25+4.235 240.000
Game-theoretic MPC-CBF  100+0.000 0.00£0.000 18+1.067 240.098
) CADRL [2] 20 £ 0.453 1.20+0.634 389+ 5.153 28 +1.141
ﬁ CADRL(L) [3] 28 £+ 2.527 0.32+£1.393 267 +6.453 127 £2.357
= Enforced Ordering 56 +£0.718  0.80 £0.894 233 +1.729 104 4 5.041
Z DWA 16 £1.765 2.48 £ 0.57 640 £ 4.583 97 £ 2.495
Auction-based 96 + 3.342 0.14 +0.003 139 4 5.233 6 +0.470
Game-theoretic QP-CBF 100 0.000 0.00-£ 0.000 46+ 2.349 2+ 0.040
Game-theoretic MPC-CBF 100+ 0.000 0.00+ 0.000 27+ 0.140 0= 0.000

TABLE I: Comparing Game-theoretic MPC-CBF versus base-
lines

Baseline Avg. AV Path Deviation ~ Makespan Ratio
Random QP-CBF [13]  038+012  1874+028 268+ 1.00
DOORWAY ORCA-MAPF [5] ~ 0.10+0.00  0.00+ 0.00 3.04 £ 0.00
Game-theoretic QP-CBF [13] ~ 0224001  0.145+£0.00  3.37+0.01
IMPCDR [14]  0.08+0.00  0.160+0.00  1.53%0.00
Game-theoretic MPC-CBF ~ 0.001+0.00 0.089 £0.02  1.10 £ 0.00
N Random QP-CBF [13]  0.30£0.10 0400 £0.14  0.99%0.04
INTERSECTION ORCA-MAPF [5|  025+000 0.0 % 0.00 222 £ 0.00
Game-theoretic QP-CBF [13] ~ 0.29+0.05  0.11140.04  2.24+0.04
IMPCDR [14]  0.08+0.00  0.151 % 0.0 1,13 + 0,00
Game-theoretic MPC-CBF ~ 0.002+0.00 0.06640.01  1.05 % 0.01
Random QP-CBF [13]  0.055+£001  0.327+032  1.16+0.04
HALLWAY ORCA-MAPF [5]  0.114+0.00  1.99 4 0.00 1.03 % 0.00
Game-theoretic QP-CBF [13] ~ 0.0080.00  0.190 £0.00  1.44+0.04
IMPCDR [14]  0.135+000 0194+000  2.08%0.00
Game-theoretic MPC-CBF ~ 0.001 +0.00  0.047 £ 0.00  1.04 % 0.00

TABLE II: Comparing alternate perturbation strategies.

F. Comparing with Alternate Perturbation Strategies

We tested our game-theoretic deadlock resolution method,
Game-theoretic MPC-CBF, against several methods, includ-
ing a random perturbation technique, a modified version
incorporating our game-theoretic approach, an MPC and
buffered voronoi cells method, and an ORCA-based method
using MAPF for deadlock resolution. The evaluation was
done in social scenarios like doorways, hallways, and inter-
sections. Key metrics were the average change in velocity,
path deviation, and average time steps across agents. Our
game-theoretic approach outperformed in terms of velocity
modulation efficiency and trajectory alignment with the pre-
ferred path. However, the performance in average completion
time varied depending on the specific scenario, with random
perturbation occasionally being faster but less efficient in its
trajectories.

VI. CONCLUSION, LIMITATIONS, AND FUTURE WORK

In this work, we presented an approach to address the chal-
lenges of safe and deadlock-free navigation in decentralized
multi-robot systems operating in constrained environments.
We introduced the notion of social mini-games to formalize
the multi-robot navigation problem in constrained spaces. We
proposed a novel class of decentralized controllers capable
of guaranteeing both safety and deadlock resolution by
achieving a game-theoretic Nash equilibrium.

The main limitation of this work is that the approach as-
sumes the liveness sets are known apriori. Liveness sets can,
however, be estimated either in simulation or using learning-
based methods for generating cost maps for navigation.
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