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Abstract— We present a simulation environment for eval-
uating decentralized multi-robot coordination algorithms in
active perception tasks. Multi-robot coordination algorithms
enable teams of robots to collaboratively achieve tasks such as
map exploration, persistent surveillance, and target tracking.
However, current simulators do not model realistic resource
constraints on communication, computation, and data stor-
age. Our architecture instead enables the following resource-
aware capabilities: modeling of physical resource constraints,
such as communication delays, Simultaneous Localization And
Mapping (SLAM) with selective landmarks for efficient active
perception, and resource-aware operation such as action coor-
dination with near-minimal communication, computation, and
data storage. More broadly, communication delays, line-of-sight
communication, and computational limitations are be simulated
to reflect real decentralized systems.

I. INTRODUCTION

Multi-robot teams provide advantages over individual
robots for collaborative tasks through decentralized coordina-
tion [1]. Simulation environments are critical for advancing
decentralized multi-robot research through rapid prototyping
and benchmarking algorithms.

Although existing multi-robot simulators such as ARGoS
[2] have useful capabilities, such as scalability, and can
model robots with limited sensing, they do not account
for cyber-physical limitations emerging from robots’ limited
resources for communication, computation, and data storage.

In this paper, we present a simulator that accounts for such
resource constraints, focusing on tasks of active perception.’
We account for communication delays, line-of-sight commu-
nication limitations, and onboard computational constraints,
implementing processes for sensing, map reconstruction, and
coordination with reduced resource requirements.

Related Work. Several simulators have been developed
for multi-robot active perception [3], [4], [5], [6], [7], [8]. We
next discuss representative examples and their limitations.

Atanasov et al. [4] presented simulations of decentral-
ized active SLAM using MATLAB. The simulated multi-
robot system relied on a globally known map, facing no
computation or communication constraints. Also, the SLAM
front-end assumed perfect data association, and there was no
obstacle avoidance. In contrast, our simulator incorporates
communication delays, computational constraints, and line-
of-sight communication constraints; it enables the robots
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Fig. 1. Gazebo simulation of 3 Turtlebot3 robots in house environment.
Our simulator accounts for realistic physical constraints such as communi-
cation delays, line-of-sight limitations, and computational constraints, and
implements processes for sensing, map reconstruction, and coordination
with reduced resource requirements.

to operate using only local maps; and it handles collision
avoidance constraints.

Chang et al. [5] developed Kimera-Multi, a multi-robot
system for metric-semantic SLAM. The system can operate
in a fully distributed fashion through peer-to-peer commu-
nication. In contrast to Kimera’s focus on the estimation
problem of metric-semantic SLAM, our focus is on active
SLAM, that is, multi-robot action coordination and execution
for collecting measurements that enable effective estimation.

Cao et al. [6] focused on multi-robot exploration under
limited communication where robots can only communicate
within a certain distance range. They propose maintaining
local high-resolution and global low-resolution maps to bal-
ance detailed coverage planning with directed exploration.
Their “pursuit” coordination strategy has robots opportunis-
tically meet to communicate and explore faster. Their pursuit

Fig. 2. RViz visualization of 3 numbered robots (in green boxes) with local
costmaps, of the same scene as in Fig. 1. Grey regions show discovered
occupancy grid map (OGM) cells. Blue points indicate OGM frontiers on
each local map. Laserscans for robots 1-3 are yellow, red, and green dots.
Larger matching dots are robot landmark features. Emerald-gray and dark
grey denote unexplored local and global costmap regions.
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strategy opportunistically shares information while we focus
on simulating active decisions based on information gain.
Such strategies could complement our coordination layer.

Contributions. We provide a resource-aware simulator
for decentralized active perception with multiple robots. The
simulator is based on the Robot Operating System (ROS)
[9], and is executable both in simulated and real-world
systems. The simulator accounts for resource limitations in
both the cyber and physical layers of decentralized multi-
robot systems. In more detail, respectively:

o Physical layer: The simulator models physical resource
constraints that typically stress real multi-robot systems:
(1) limited inter-robot communication speed due to com-
munication delays, (ii) limited inter-robot connectivity
due to line-of-sight constraints and limited onboard
communication range, and (iii) limited information pro-
cessing due to onboard computation constraints.

o Cyber layer: The simulator enables sensing, planning,
and control capabilities with reduced requirements for
onboard computation, communication, and data storage,
by including (i) a dynamic map merging system that
merges Occupancy Grid Map (OGM) and local pose
graphs, discarding maps after they are used for coor-
dination to conserve onboard resources for data stor-
age, and (ii) an action coordination module for active
perception that enables resource-awareness by imple-
menting the Resource-Aware distributed Greedy (RAG)
[1] algorithm which has near-minimal requirements for
communication, computation, and data storage.

Additional cyber capabilities of our simulator include (i)
active perception front-end using the Fast Adaptive Laser
Keypoint Orientation-invariant library (FALKOIib) [10] key-
point detection integrated with Georgia Tech Smooth And
Mapping (GTSAM) [11] back-end for landmark-based Pose
Graph Optimization (PGO) in SLAM, (ii) multi-robot laser
scan filter to mitigate robot-as-obstacle errors in SLAM,
(iii) integrated an OGM frontier search algorithm to obtain
frontiers on local or global OGMs, and (iv) inter-robot and
environment object collision avoidance.

Approach. Our simulator is built on C++14, utilizing ROS
Melodic and Gazebo 9.19.0. The modular architecture inter-
connects major components for active SLAM. For sensing,
we used the OpenKarto library [12] as the SLAM front-end,
which originally implements the Sparse Pose Adjustment
(SPA) optimizer back-end. To make the software environ-
ment more accessible for computing marginal covariance
of poses and landmarks needed for information gain [4],
we replaced the SPA optimizer in our map reconstruction
module with the GTSAM [11] library for optimizing with
landmark-based pose graphs. We used FALKOIib [10] to de-
tect keypoints representing landmarks in the environment —
the detected keypoints are potential landmark observations.
Newly discovered landmarks are added as new nodes in the
GTSAM graph. For landmarks that have been previously ob-
served, we add a pose-to-landmark constraint edge between
the robot’s current pose and the existing landmark node in
the graph. Doing Pose Graph Optimization (PGO) with a
landmark-based pose graph enables computing information

gain, which is used by our coordination (action planning)
module. Our control (action execution) module individually
executes the motion of each robot based on the joint control
actions selected by the coordination module.

II. SOFTWARE ARCHITECTURE OF THE SIMULATOR

We describe the modular software architecture for sim-
ulating decentralized multi-robot tasks of active perception
(Fig 3). The architecture consists of custom ROS packages
and modified existing packages, and its modularity facili-
tates customizing the pipeline to suit simulation needs. We
simulate multiple Turtlebot3 robots, along with realistic com-
munication, computational, control, and sensing capabilities.

The modules in Fig. 3 cover the pipeline for autonomous
active perception: map sensing, map reconstruction, action
coordination (action planning), including collision avoidance,
and control (action execution). We elaborate below.
A. Physics Engine

Gazebo Simulation Stack. The turtlebot3 package
provides a high-fidelity Gazebo simulation that emulates
Turtlebot3 sensor data and physics. The simulator publishes
sensor streams over ROS identical to real Turtlebot3s.

Each simulated robot runs the decentralized active SLAM
system in Fig. 3. Robots are assigned unique namespace
identifiers that prefix variable names We describe each soft-
ware module in more detail below.

B. Map Sensing Module

Multi-Robot Laser Scan Filtering. When robots are
within laser scanner range, their scans interfere by detect-
ing each other as obstacles. This causes inaccurate scan
matching and motion estimates as dynamic robots appear
static between scans. To address this, the filter module
(multirobot_laserscan_filter) uses robot loca-
tion data to remove interfering scan ranges before input to
the OpenKarto SLAM layer. Additionally, our coordination
module rejects motion plans colliding with other robots.
This removed the need for a reactive local planner like the
Timed Elastic Band (TEB) [13] that dynamically optimizes
trajectories with obstacle avoidance constraints.

Pose-Landmark GTSAM Graph Optimization. A
key contribution is using GTSAM’s Levenberg-Marquardt
optimizer to jointly estimate robot poses and land-
mark features. This provides the first ROS pack-
age, slam_karto_gtsam_landmark that enables Kar-
toSLAM to leverage GTSAM’s landmark-pose graph op-
timizer with FALKOIlib. GTSAM facilitates obtaining
marginal covariances for poses and landmarks, unlike Karto’s
Sparse Pose Adjustment. We currently assume no outliers.

We maintain the landmark graph with visited landmark
locations. New and re-observed landmarks are added with
range-bearing constraints reflecting real sensor uncertainty.

To reduce communication bandwidth, we used a custom
ROS message which serializes robot pose, landmark, co-
variances, and graph key information. The RAG algorithm
deserializes this message for decision-making.

GTSAM graph optimization occurs after 5 new nodes
(robot poses or landmarks) have been added by Kar-
toSLAM’s front-end processing, balances the tradeoff be-
tween accuracy and computation time. Frequent optimiza-
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Simulator’s architecture. Green blocks are new modules that we created to enable RAG implementation. Pink blocks are existing packages that

are used in the simulator after changes. Blue blocks are existing packages that are used in the simulator with no changes. Yellow blocks represent data.

tion introduces efficiency bottlenecks, while infrequent op-
timization accumulates error. We modified KartoSLAM to
dynamically adjust the number of nodes required to trigger
an optimization based on the robot’s motion. For rotational
motion, node thresholds are reduced to bound error during
rapid uncertainty growth. For translational motion, node
thresholds are increased to reduce unnecessary optimization.

C. Map Reconstruction Module

OpenKarto SLAM Front-End and FALKOIib Keypoint
Detection. This module (open_karto) extends the exist-
ing OpenKarto library, which handles (i) scan matching,
(ii) loop closure detection, and (iii) landmark-based pose
graph generation. We made modifications to enable 2D laser
scan keypoint detection using FALKO, where keypoints are
defined as regions of a laser scan with invariance to view-
points and detection repeatability across frames. This enables
tracking of visited landmark keypoints without re-adding
them. Re-adding landmarks leads to denser graphs, higher
optimization cost, and duplicated nodes. Using persistent
landmarks enables efficient long-term operation. We also
activate GTSAM optimization when accumulating 5 new
nodes or on loop closure, rather than only on loop closure.
This enables joint optimization over poses and landmarks,
achieving higher accuracy than optimizing over poses only,
maintaining the graph sparse.

Dynamic-Origin Occupancy Grid Map and Pose
Graph Merger. This module takes in dynamic-origin Oc-
cupancy Grid Maps (OGMs) published by KartoSLAM
with origins linked to the robot’s changing pose. It out-
puts standardized 384 x 384 OGMs with fixed (—10, —10)
origins to enable multi-robot map merging. The orig-
inal multirobot_map_merge [14] package required
fixed OGM origins, but graph-based KartoSLAM out-
puts local OGMs with varying grid dimensions and shift-
ing origins based on the robot trajectory. This pre-
vented accurate merging. To address this, we created the
multirobot_merge_graphmap node. It generates new

enlarged OGMs and inserts the KartoSLAM occupancy data
in the proper cells based on transforming each cell’s indices
from the dynamic frame to the fixed global frame. This
properly resizes and standardizes the maps for merging.
Additionally, it merges local landmark graphs into a unified
global graph. RAG utilizes the merged landmark covariances
for mutual information gain evaluations.

D. Coordination (Action Planning) Module

Decentralized Resource-Aware Coordination
Algorithm. We present how the coordination module
(resource_aware_coordination) enables the robots
to select their next actions, i.e., their trajectories at the
next time step, in a decentralized resource-aware manner.
The robots aim to select actions such that the accumulative
reduced uncertainty over detected landmarks is maximized
after the selected actions are executed. The metric used
by the robots to evaluate the reduced uncertainty is the
mutual information of the collected measurements and the
landmarks’ positions [4]. The objective function used in our
coverage planning problem, the mutual information between
the collected measurements and landmarks’ positions,
exhibits diminishing returns and is submodular [I15].
Submodularity captures the intuitive notion of diminishing
returns, meaning adding a new robot to a small team of
robots gives more gain than adding it to a larger team.

Solving the coverage problem is NP-hard [16], and a near-
optimal approximation ratio is the 1/2, which is achieved by
the Sequential Greedy algorithm [17]. However, Sequential
Greedy cannot scale to many robots since it requires sequen-
tial decision-making, resulting in resource requirements that
increase linearly with the number of robots [1].

We use instead the Resource-Aware distributed Greedy
(RAG) algorithm, introduced in [1]. RAG enables resource-
aware decentralized action selection for the robots by solving
the coverage problem: RAG enjoys near-minimal compu-
tation, communication, and data-storage resources via en-
abling parallel decision-making, instead of sequential.
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Fig. 4. Goal pose setting using the RAG algorithm. Three robots are
depicted. The position of each robot is represented at each pink arrow’s
base. Orientation is indicated by the arrow’s direction. Green lines represent
planned trajectories. Red lines show the DWA local planner’s motion plans.

Now we explain how the RAG algorithm is set up to max-
imize information gain from discovered landmarks. When
landmarks are unavailable, it uses frontier points to encour-
age exploration and gain information about unexplored space
until new landmarks are detected, similar to [4]. We adapted
a frontier exploration [18] algorithm to only identify frontier
points in the OGM. The module takes in: (i) locations and
marginal covariance matrices of robot poses and landmark
positions from graph optimization result, (ii) locations and
pre-set covariances of frontier points in each robot’s frame,
and (iii) SE3 transformation matrices from the world frame
to each robot’s frame. Using these inputs, RAG forms a
matrix of Gaussian priors containing the mean positions and
covariances for current robot poses, discovered landmarks,
and detected frontier points. RAG applies receding horizon
control to plan optimal T-step trajectories by solving the
active information acquisition problem. This is subject to
constraints and objectives from the RAG formulation.

Line-of-Sight Communication. To coordinate commu-
nication, the module can identify in-neighbors and out-
neighbors of each robot based on communication range and
proximity flags provided by the base station. If the robots
are within a communicable range, it merges the individual
robot’s OGMs and local landmark-based pose graphs. Once
the sets of in/out-neighbors choose actions, their locally
merged OGMs and landmark-based pose graphs are dis-
carded. The base station saves each local OGM continuously
and performs merging. It computes the submodular condi-
tional differential entropy of the Gaussian priors through
forward simulation [19] and pre-defined control action priors.
This determines the mutual information gain of possible con-
trol actions. It decides optimal velocity inputs and publishes
goal poses to each robot’s navigation stack, as shown in
Fig. 4, executing one step from the T-step trajectory.

Communication Delays and Computation Constraints.
To simulate realistic communication delays, the module
introduces time delays proportional to the size in bits of
messages being sent based on configurable communication
bandwidth constraints. Communication using Wi-Fi 802.11b,
which utilizes the 2.4GHz frequency band, reaches a peak
data rate of 26 Mb/s on the Raspberry Pi 3B+. Meanwhile,
lower-data-rate protocols can lead to a communication band-
width as low as 1 Kb/s. For instance, a GTSAM Pose Graph

Optimization (PGO) result message, including covariances,
averages about 1604 Bytes. Restricting communication to 1
Kb/s necessitates a publication frequency of approximately
0.623 Hz (1000/1604 ~ 0.623Hz), resulting in an additional
delay of 0.604 seconds beyond the 1-second interval. We
can also add delays matching the loop execution time of
modeled computational hardware to simulate limited onboard
processing resources. The computation delay is established
similarly to the communication delay, using the onboard
processor’s processing speed to calculate the proportional
constant. These two constraints can be tuned independently,
making it possible to simulate heterogeneous teams.

E. Control (Action Execution) Module

The navigation package takes in odometry, laser
scans, and goals, outputting velocity commands using DWA
local planning [20]. It connects the decentralized path plan-
ner on each robot to the motion controller, enabling obstacle
avoidance. The coordination algorithm sets world frame
goals for each robot. Robots navigate to these goals with
decentralized collision avoidance, rejecting plans colliding
with obstacles in local cost maps.

ITI. CAPABILITIES AND USAGE

Simulated Tasks. The simulator currently enables decen-
tralized exploration via multi-robot active SLAM. But mod-
ifying the simulator’s coordination module can straightfor-
wardly enable additional tasks such as multi-target tracking
or persistent surveillance.

Transferring from Simulation to Real Multi-Robot
System. The simulated base station emulates an on-site
computer for real robot control via WiFi. Decision-making
centralization is configurable for full decentralization. Our
namespace and topic conventions match real ROS systems
for easy transition. The resource-awareness constraints in
simulation code are removed, as real onboard platform
limitations manifest naturally.

IV. CONCLUSIONS

Summary. We provided a resource-aware simulator for
decentralized active perception with multiple robots. The
simulator is based on ROS, and is executable both in sim-
ulated and real-world systems. The simulator accounts for
resource limitations in both the cyber and physical layers of
decentralized multi-robot systems, integrating FALKOIib for
feature detection, GTSAM for map reconstruction, and the
RAG algorithm for coordination.

Future Work. We aim to improve the simulator’s scala-
bility and overall system performance:

a) Scaling to Larger Multi-Robot Teams. To simu-
late 30+ robots in large environments, we will transition from
Gazebo to Unreal. For lower fidelity 100+ robots simulation,
we plan to use ARGoS [2]. To enable efficient optimization
for large teams with degraded odometry, we can implement
LAGO (Linear Approximation for pose Graph Optimization)
[21] instead of GTSAM.

b) Improving system performance. We will further
optimize the algorithms and infrastructure, improving pose
graph efficiency, and enabling semantic mapping [5].
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