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Abstract— In this paper, we propose a decentralized
uncertainty-aware bi-level optimization approach to achieve
connectivity maintenance while accounting for Gaussian-
distributed localization uncertainty. By integrating the theoretic
approach into a graph-based approach, a minimally constrain-
ing set of connectivity edges are obtained and stay updated over
the dynamically changing multi-robot communication graph.
By jointly optimizing the connectivity constraints to enforce
and resultant control revisions, the intended minimally revised
multi-robot controllers can be obtained while ensuring safety
and connectivity under uncertainty. Moreover, we introduce
a fully decentralized algorithm that interleaves the constraint
specification from the proposed graph-theoretic approach and
solving the resulting optimization-based control problem. This
enables efficient computation for large-scale systems. Simula-
tion results demonstrate the effectiveness of our method.

I. INTRODUCTION

Networked multi-robot systems are capable of exhibit-
ing cooperative behaviors in various domains, e.g., search
and rescue, environmental sampling and exploration, and
precision agriculture. Robots within a limited communi-
cation range can achieve collective decision-making and
information sharing [1] and may form subgroups to perform
multiple tasks in parallel for efficient task execution [2]. For
example, a group of robots can be split into subgroups to
cover different terrains in disaster areas, coordinating and
sharing information for effective search and rescue missions.
Besides, it is also necessary for the networked multi-robot
system to guarantee safety and connectivity under noisy
observation, which is aroused from various estimation or
prediction procedures in the real world.

Hence, to achieve reliable coordination for the networked
multi-robot system, it is often necessary to 1) maintain
connectivity both for all robots within the system, which
is commonly referred to as maintaining global connectivity
[3], [4], as well as the connectivity within the different
subgroups, 2) guarantee the safety, i.e. robots need to avoid
collision while maintaining the desired connectivity [5], and
3) ensure the scalability of the system, allowing for the
efficient operation of robots in large-scale applications [6].
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Existing research primarily focuses on either global or
local connectivity in multi-robot systems. Global methods
preserve algebraic connectivity, ensuring the positive second-
smallest eigenvalue of the communication graph Laplacian
[7], [8], but lack flexibility for task coordination. Local
approaches [9], [10] maintain the fixed initial graph topology,
often leading to conservative constraints on robot motion. To
this end, a more flexible communication graph to maintain
is preferred to achieve less restrictive behavior and higher
task efficiency. On the other hand, task performance such
as connectivity maintenance with formal guarantees also
relies on tools used for constraint specification. Control
barrier functions (CBF) [11] have been extensively studied
for multi-robot systems to ensure safety and connectivity by
constraining the control input at each time step so that the
state of the system remains within a desired region [12], [13].
Our previous work [2] utilized CBFs and a graph-theoretic
approach to guarantee global and subgroup connectivity with
flexible multi-robot coordination. However, these approaches
assume perfect localization information, and they also require
synchronized communication among agents which leads to
less efficient computation.

To enhance the real-time computation efficiency, dis-
tributed optimization-based frameworks, such as Consensus
Alternating Direction Method of Multipliers (C-ADMM)
[14], have gained interest in solving large-scale optimization
problems in multi-robot collaboration. Although C-ADMM
has been successfully adopted in various applications [15],
[16], existing algorithms mainly focus on agent operation
with given constraints. It is unclear how to extend such
an algorithm to general multi-robot tasks with flexible con-
nectivity maintenance, whose constraints between pairwise
robots may not be explicitly defined beforehand.

We provide an intuitive illustration of our proposed
method in Figure 1. The main contributions of this paper
are three-fold. First, a novel decentralized uncertainty-aware
bi-level optimization approach is proposed to achieve safety
and connectivity maintenance under observation uncertainty.
Probabilistic Control Barrier Certificates, such as Proba-
bilistic Safety Barrier Certificates (PrSBC) and Probabilistic
Connectivity Barrier Certificates (PrCBC), are utilized to
maintain inter-robot connectivity and safety with a user-
specified probability. Second, we also present a novel way to
compute the optimal composition of PrCBC so that it can be
directly embedded into a graph-based approach. By doing
so, a minimally constraining set of connectivity edges are
obtained and stay updated over the dynamically changing
multi-robot communication graph. By jointly optimizing the



Fig. 1: Denote G = (V, E) as the communication graph of the robotic team, where each node v ∈ V represents a robot. If the Euclidean distance between
the pair-wise robot i and j is smaller than the communication range, then it is assumed that the two robots are connected and can communicate with
the undirected edge (vi, vj) ∈ E (i.e.(vi, vj) ∈ E ⇐⇒ (vj , vi) ∈ E). The connectivity spanning graph can be denoted as Gc = (V, Ec) ⊆ G. We aim
to obtain the real-time optimal connectivity graph Gc∗(tcurrent) ⊆ G(tcurrent) to enforce at each time step for flexible multi-robot coordination under
positional uncertainty, while ensuring safety and required connectivity. The enforced graph Gc∗(tcurrent) should be both globally and subgroup connected,
meaning there is at least one path between every pair of vertices in the graph and in each induced subgroup (blue and red in this example).

connectivity constraints to enforce and resultant control revi-
sions, the intended minimally revised multi-robot controllers
can be obtained while ensuring safety and connectivity under
uncertainty. Third, we introduce a Consensus Alternating Di-
rection Method of Multipliers (C-ADMM)-based algorithm
that interleaves the constraint specification from the proposed
graph-theoretic approach, as well as solving the resulting
optimization problem in a distributed manner. This enables
efficient computation for large-scale systems.

II. PROBLEM STATEMENT

In this paper, we consider a robotic team S with N robots
moving in a d-dimensional workspace that encompasses both
free space and K static obstacles. The static obstacles1

o ∈ O = {1, ...,K} are modelled as rigid sphere centred at
xobs
o ∈ Rd. The dynamics of each robot i, located at position

xi ∈ Rd, follow the equation ẋi = Fi(xi) +Gi(xi)ui with
ui ∈ Rq , where both Fi : Rd → Rd and Gi : Rd → Rd×q are
locally Lipschitz continuous functions. The positions avail-
able to the robots are affected by Gaussian-distributed noise
arising from sensors, represented by x̂i = xi+ϵi, where ϵi ∼
N (0,

∑
i). We assume the robotic team S has been assigned

M simultaneous tasks (M ≤ N ) with M divided subgroups
S = {S1, . . . ,SM}, where each robot i has been tasked
to a subgroup Sm, m = 1, . . . ,M with the individual
task-related nominal controller ui = ũi ∈ Rq . Then given
the real-time communication graph Gc determined by the
observed noisy robots’ locations x̂i ∈ Rd, the primary
objective of this paper is three-fold: (i) Global and subgroup
LOS connectivity of the resulting communication graph G
remains preserved as robots move. (ii) The communication
constrained robot controller u for all robots will be minially
deviated from their nominal task-related controller ũi ∈ Rq .
(iii) The proposed solution is computationally efficient and
scalable, suitable for deployment in large-scale systems in a
distributed fashion.

We assume that all robots are safe (i.e. ||xi − xj || ≥ Rs

with Rs as the safety radius) and that the communication

1In this paper, for simplicity, the obstacle positions xobs
o are assumed to

be known by each robot, and one can also extend our approach to consider
obstacles with noisy observations as surrounding robots that are static.

graph Gc is global and subgroup connected initially. Hence,
the step-wise optimization problem can be defined as follows,
boiling down to (a) identify the least constraining commu-
nication subgraph Gc∗ that must be maintained to preserve
global and subgroup connectivity. (b) minimize the control
deviation, taking into account the connectivity constraints
derived from (a).

u∗ = argmin
Gc,u

N∑
i=1

∥ui − ũi∥2 (1)

s.t. Gc = (Vc, Ec) ⊆ G is connected (2)
Gm = Gc[Vm] is connected ∀m = 1, ...,M (3)

u ∈ Sσs

u (x̂) ∩ Sσobs

u (x̂,xobs) ∩ Cσc

u (x̂,Gc),

||ui|| ≤ αi,∀i = 1, . . . , N (4)

where Sσs

u (x̂), Sσobs

u (x̂,xobs) and Cσc

u (x̂,Gc) are the de-
veloped admissible control space for high-probability inter-
robot collision avoidance (Sσs

u (x̂)), robot-obstacle colli-
sion avoidance (Sσobs

u (x̂,xobs)), communication mainte-
nance (Cσc

u (x̂,Gc)). αi indicates the bounded control input
for each robot. In Section III, we will introduce how to
design such admissible control spaces and develop a novel
distributed algorithm that interleaves the two processes of
finding the optimal graph Gc∗ and solving a reformulated
constrained QP problem, which is proved to produce the
same solution as in the centralized version in (1).

III. METHOD

In our previous work [17], the concept of Probabilistic
Safety Barrier Certificates (PrSBC) was introduced, consti-
tuting a probabilistic extension of the Control Barrier Func-
tion (CBF) [11]. This method ensures high-probability col-
lision avoidance between pairwise robots, as well as robots
and obstacles, by accounting for bounded noise (uniformly
distributed) on observed robots’ states [18].The Probabilistic
Safety Barrier Certificates (PrSBC) have been formulated
as deterministic linear control constraints, delineating the
admissible control spaces These constraints guarantee safety



with probabilities at least σ, where σ is user-define confi-
dence level reside in the interval (0, 1).

In this work2, we relax the assumption of bounded system
observation noise on robots’ states and extend to a more
general setting with Gaussian distributed observation noises
that are unbounded, e.g. derived from Kalman filters. Hence,
we propose the Probabilistic Control Barrier Certificates
to depict the deterministic control space, rendering the
system staying in the desired set with high probability σ.
To be more specific, one can adopt Probabilistic Control
Barrier Certificates to design the deterministic linear con-
straints to describe the admissible control space Sσs

u (x̂)

and Sσobs

u (x̂,xobs) for guaranteed pairwise robot and robot-
obstacle safety with probability at least σs, σsobs ∈ (0, 1).
Accordingly, one can also adopt Probabilistic Control Barrier
Certificates to describe the deterministic admissible control
space Cσc

u (Gslos), so that with probability at least σc ∈ (0, 1),
all pairwise communication constraints will be satisfied
between robots i, j in a given spanning communication
subgraph Gc = (V, Ec) where (vi, vj) ∈ Ec. Thus by
following the admissible control space depicted as Sσs

u (x̂),
Sσobs

u (x̂,xobs) and Cσc

u (x̂,Gc), the moving robots are able
to ensure collision-free motion while preserving the required
connectivity through a given subgraph Gc to maintain with
prescribed high probabilities.

However, at each time step, there may exist multiple
candidate subgraphs Gc , which satisfy both the global and
subgroup connectivity requirement. To select the optimal
subgraph Gc∗ to maintain at each time step, we first propose
the Uncertainty-aware Least Constraining Tree (LCT)
algorithm. By accepting the robots’ noisy positional data
and nominal controllers as inputs, the algorithm is capable of
identifying a specific Minimum Spanning Tree (MST) Gc∗ ⊆
G. The selected edges of this MST are characterized by two
attributes: 1) are least likely to break under the nominal
multi-robot behaviours, and 2) satisfy the requirement of both
global and subgroup connectivity. Then by maintaining such
a subgraph Gc = Gc∗ ⊆ G with the associated admissible
control space in (4), the problem (1) becomes a Quadratic
Programming that could be directly solved in a centralized
manner.

Finally, to enhance the computation efficiency, the cen-
tralized QP problem (1) can be further reformulated and
solved in a decentralized form for any given connectivity
constraints in Cσc

u (x̂,Gc) using C-ADMM [14], [15]. How-
ever, the connectivity constraints in Cσc

u (x̂,Gc) is unknown
beforehand and will be updated as robots move. Hence,
we propose the Uncertainty-Aware Decentralized Least
Constraining Tree (Dec-LCT) algorithm that solves the bi-
level optimization problem (1) with optimal Gc∗ computed
in a fully decentralized and interleaved manner. Each robot
takes their own and neighbour’s3 noisy observation state and
nominal controller information as inputs, robots iteratively

2Due to page limit, we provide a concise explanation of our method.
3For our problem settings, we assume that if the robots are within the

communication range, they can communicate and share information.

updates the communication edges, constructed corresponding
connectivity constraints and solve the resulting reformulated
decentralized problem. Eventually, the team of robots will
be guaranteed to form the optimal communication graph Gc∗

and the resultant optimal individual robot’s controller is the
solution of (1).

IV. RESULTS

The experiment4 is performed on a team of N = 48 robots,
which has been divided into M = 4 subgroups executing M
tasks respectively in parallel. Each subgroup Sm contains
Nm number of robots for m = 1, . . . ,M . Each robot adopts
the nominal controller ũi as ũi = −k(xi − ci), where
k > 0 is a pre-assigned control gain and ci is the destination
position. The magenta robots rendezvous to magenta task
region ci = [1.5 0]. The red, green, and blue robots move
to ci = [rm cos( 2πi

Nm
+ 2πt

100Nm
) rm sin( 2πi

Nm
+ 2πt

100Nm
)] +

xtask
m , where rm > 0 is the task circle radius, i ∈ Sm, and

xtask
m = {xtask

1 , ...,xtask
M } is the pre-assigned task position

with t as the time step, to form a circle with radius rm
around the task position xtask

m . The xtask
m for red, green, and

blue robots in our experiment are [−1.5 0],[0 − 1.5] and
[0 1.5], respectively. To demonstrate the flexible robots’
motion by our method, we compare our Dec-LCT against
three baseline methods (Fig. 2), in which 1) only edges
in the initial LCT is preserved without updating (Fig. 2d),
2) edges in the initial communication graph are preserved
without updating (Fig. 2e), and 3) edges in MCCST [2] is
preserved (i.e. LCT without considering uncertainty, Fig. 2f).

Fig. 2d shows that when the connectivity graph is fixed as
the robot team moves, it becomes difficult for them to spread
out and execute tasks, and they may easily fall into deadlock
as also shown in Fig. 2e. This demonstrates the significance
of our algorithm by identifying the least constraining LCT
and updating it over time to maximize motion flexibility
towards nominal robots’ behaviors. Moreover, it is observed
in Fig. 2f that the robot team will disconnect due to observa-
tion uncertainty without using our method.The corresponding
numerical results in Fig. 3 show that our method ensures the
best task performance with the least control perturbation,
while guaranteeing safety and connectivity under localization
uncertainty. Besides, it is demonstrated in Fig. 3c that our
distributed algorithm achieves the similar performance as the
centralized solution.

V. CONCLUSION

A novel distributed algorithm is presented to address
global and subgroup connectivity maintenance with collision
avoidance for the robotic team under uncertainty over time.
Probabilistic Control Barrier Certificates are proposed to
ensure a lower-bounded probability of inter-robot safety
and connectivity. By integrating Probabilistic Control Barrier

4The experiment video is available online at https://youtu.be/
sZZXkW7rQWs. Readers are encouraged to look at the details of the
experiments in the video.

https://youtu.be/sZZXkW7rQWs
https://youtu.be/sZZXkW7rQWs


(a) Time Step = 0 (b) Time Step = 1600 (c) Time Step = 2400

(d) Time Step = 1000(Fixed Initial LCT
(uncertainty-aware), Converged)

(e) Time Step = 300 (Fixed Initial Communi-
cation Graph (uncertainty-aware), Converged) (f) Time Step = 250 (MCCST, Disconnected)

Fig. 2: Simulation example of 48 robots are tasked to four different places. The confidence level in this experiment is set as σs = σobs = σc = 0.9. The

robot diameter in these sets of experiments is 0.03. The Multivariate Gaussian covariance matrix for measurement noise is
(
0.003 0
0 0.004

)
. Compared

to baseline methods from: initial LCT (d), the fixed initial communication graph (e) and MCCST [2](f), our proposed method can keep connectivity and
enables minimally perturbed task performance due to the constraints from the connectivity maintenance on the robots.

(a) Minimum inter-robot/obstacle dis-
tance (b) Algebraic connectivity (c) Average control perturbation (d) Average distance to target region

Fig. 3: Performance comparison of the simulation example in Fig. 2 w.r.t. different metrics: (a) Minimum inter-robot/obstacle distance computed by
min{distance between robots − 0.06, distance between robot and obstacle − 0.23} at each time step. Positive meaning safety ensured (b) Algebraic
connectivity evaluated by the second-smallest eigenvalue of the multi-robot Laplacian matrix. Positive meaning connectivity ensured. (c) Control perturbation
computed by 1

N

∑N
i=1

∥∥u∗
i − ũi

∥∥2. (d) Average distance between robots to the tasked region (the smaller, the better).

Certificates with our proposed Decentralized Least Con-
straining Tree (Dec-LCT) algorithm, robot teams are demon-
strated to stay safe and connected under uncertainty with a
minimally deviated control policy. We provide the simulation
results to demonstrate the effectiveness of our method.
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